Tight frame wavelets and the dimension function

نویسنده

  • Hrvoje Šikić
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A-B-imprimitivity bimodule frames

Frames in Hilbert bimodules are a special case of frames in Hilbert C*-modules. The paper considers A-frames and B-frames and their relationship in a Hilbert A-B-imprimitivity bimodule. Also, it is given that every frame in Hilbert spaces or Hilbert C*-modules is a semi-tight frame. A relation between A-frames and K(H_B)-frames is obtained in a Hilbert A-B-imprimitivity bimodule. Moreover, the ...

متن کامل

Wavelets with Frame Multiresolution Analysis

A frame multiresolution (FMRA for short) orthogonal wavelet is a single-function orthogonal wavelet such that the associated scaling space V0 admits a normalized tight frame (under translations). In this paper, we prove that for any expansive matrix A with integer entries, there exist A-dilation FMRA orthogonal wavelets. FMRA orthogonal wavelets for some other expansive matrix with non integer ...

متن کامل

Tight wavelet frames in low dimensions with canonical filters

This paper is to construct tight wavelet frame systems containing a set of canonical filters by applying the unitary extension principle of [20]. A set of filters are canonical if the filters in this set are generated by flipping, adding a conjugation with a proper sign adjusting from one filter. The simplest way to construct wavelets of s-variables is to use the 2−1 canonical filters generated...

متن کامل

Connectivity in the set of Tight Frame Wavelets (TFW)

We introduce new ideas to treat the problem of connectivity of wavelets. We develop a method which produces intermediate paths of Tight Frame Wavelets (TFW). Using this method we prove that a large class of TFW-s, with only mild conditions on their spectrum, are arcwise connected.

متن کامل

Some Equations Relating Multiwavelets and Multiscaling Functions

The local trace function introduced in [Dut] is used to derive equations that relate multiwavelets and multiscaling functions in the context of a generalized multiresolution analysis, without appealing to filters. A construction of normalized tight frame wavelets is given. Particular instances of the construction include normalized tight frame and orthonormal wavelet sets.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002